TEXAS INSTRUMENTS Data sheet acquired from Harris Semiconductor

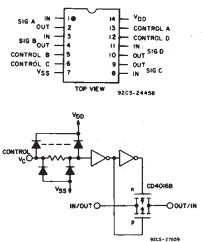
SCHS026C – Revised September 2003

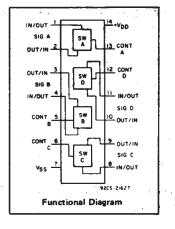
CMOS Quad Bilateral Switch

For Transmission or Multiplexing of Analog or Digital Signals

High-Voltage Types (20-Volt Rating)

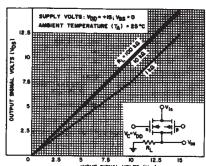
■ CD4016B Series types are quad bilateral switches intended for the transmission or multiplexing of analog or digital signals. Each of the four independent bilateral switches has a single control signal input which simultaneously biases both the p and n device in a given switch on or off.

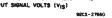

The CD4016 "B" Series types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M, MT, M96, and NSR suffixes), and 14-lead thin shrink small-outline packages (PW and PWR suffixes).

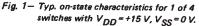

Features:

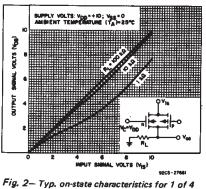
- 20-V digital or ± 10-V peak-to-peak switching
- 280-Ω typical on-state resistance for 15-V operation
- \blacksquare Switch on-state resistance matched to within 10 Ω
- typ. over 15-V signal-input range High on/off output-voltage ratio:
- 65 dB typ. @ f_{is} = 10 kHz, R_L = 10 k Ω = High degree of linearity: <0.5% distortion
- typ. $@ f_{is} = 1 \text{ kHz}$, $V_{is} = 5 V_{p-p}$, $V_{DD}-V_{SS} \ge 10 \text{ V}$, $R_L = 10 \text{ k}\Omega$
- Extremely low off-state switch leakage resulting in very low offset current and high effective off-state resistance: 100 pA typ. @ VDD-VSS=18 V, TA=25°C
- Extremely high control input impedance (control circuit isolated from signal circuit: $10^{12} \Omega$ typ.
- Low crosstalk between switches:
 -50 dB typ. @ fis = 0.9 MHz, R_L = 1 kΩ
- Matched control-input to signal-output capacitance:
- Reduces output signal transients = 40
- Frequency response, switch on = 40 MHz (typ.)
- 100% tested for quiescent current at 20 V • Maximum control input current of 1 μ A
- at 18 V over full package temperature range; 100 nA at 18 V at 25°C 5-V, 10-V, and 15-V parametric ratings
- Applications:
- Analog signal switching/multiplexing
 Signal gating
 Modulator
 Squelch control
 Demodulator
 Chopper
 Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital & digital-toanalog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain

Schematic diagram - 1 of 4 identical sections.


RECOMMENDED OPERATING CONDITIONS


For maximum reliability, nominal operating conditions should be selected so that operation is always within the following range:


CHARACTERISTIC	LIN	UNITS	
	Min.	Max.	01113
Supply Voltage Range (For T _A = Full Package Temperature Range)	3	18	v


MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to V _{SS} Terminal)	
INPUT VOLTAGE RANGE, ALL INPUTS	
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -55^{\circ}C$ to +100°C	
For T _A = +100°C to +125°C Derat	e Linearity at 12mW/ ^O C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	· ·
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types	s)
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	

"Ig. 2— Typ. on-state characteristics for 1 of 4 switches with V_{DD} = +10 V, V_{SS} = 0 V.

Copyright © 2003, Texas Instruments Incorporated

ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	TEST CONDITIONS								CATED S (°C)	I	U N I T S	
	e - e			VDD					1	25		
			(V) 0,5	(V) 5	- 55	40	+85		Тур. 0.01	Max.	ļ	
Quiescent Device			0,10	10	0.5	0.25		· · · · ·	0.01	0.25	1	
Current, IDD			0,15	15	1	1	30		0.01	0.5	μA	1
			0,20	20	5	5	150		0.02	5	1	
Signal Inputs (V _{is}) and Output	(V _{os})				•;-			10.01	<u> </u>	.	1
On-State Resistance, r _{on}	$V_C = V_{DD}$	V _{is} =V _{DD} or	V _{SS}	10	600	610	840	960		660		
Max.	RL≖10kΩ Returned	V _{is} =4.75 to	5.75 V	10	1870	1900	2380	2600	_	2000		
	to V _{DD} -V _{SS}	V _{is} =V _{DD} or V _{is} =7.25 to	V _{SS}	15	360	370	520	600	_	400	Ω	
	2	V _{is} =7.25 to	7.75 V	15	775	790	1080	1230	-	850		
∆On-State Resistance	· ·	19 1 1 - 1		5	_		-	_	15	-		[
Between Any	$R_L = 10 k\Omega$, $V_C = V_{DD}$			10		-	-		10	_	Ω	
2 Switches, ∆r _{on}	1				-	_	-	- 1	5		1	F
Total Harmonic Distortion, THD	V _C =V _{DD} = 5 V, V _{SS} = -5 V, V _{is} (p-p) = 5 V (Sine wave centered on 0 V) R _L =10 kΩ, f _{is} =1 kHz sine wave					_	_	-	0.4	-	%	
-3dB Cutoff Frequency (Switch on)	VC=VDD=5V, VSS=-5V, V _{is(p} -p) =5V (Sine wave centered on 0 V) RL=1 kΩ,				. –	-	-	-	40	_ :	MHz	
-50dB Feed- through Frequency (Switch off)	$V_{C}=V_{SS}=-5V, V_{is(p-p)}=5V$ (Sine wave centered on 0 V) $R_{L}=1 \text{ Ik}\Omega$				_	-	-	_	1.25	-	MHz	
Input/Output Leakage Current (Switch off) I _{is} Max.	$V_{C} = 0 V$ $V_{is} = 18 V, V_{os} = 0 V;$ $V_{is} = 0V,$ $V_{os} = 18 V$ 18				±0.1	±0.1	±1	±1	104	±0.1	μA	
-50 dB Crosstalk Frequency	$V_{C}(A) = V_{DD} = +5 V,$ $V_{C}(B) = V_{SS} = -5 V,$ $V_{is}(A) = 5 V_{p-p},$ $SO Ω source R_{L} = 1 kΩ$					-	-	_	0.9		MHz	
O versetter	RL = 200 ks			5	<u> </u>	_			40	100		
Propagation Delay (Signal	VC = VDD, CL = 50 pF	VSS = GND	,	10	_	-	_	_	20		ns	
Input to Signal Output) t _{pd}	Vis = Square 0 to VDD t _r , t _f = 20 ns	Wave		15	-	-	-	-	15	30		
Capacitance: Input, C _{is}	V _{DD} = +5 V				-	_	_	_ ·	4	-		
Output, C _{os}	$V_{C} = V_{SS} =$				-	-	-	-	4		ρF	
Feedthrough, C _{ios}					-	_	-	-	0.2 -		1	F

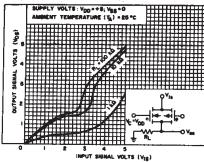


Fig. 3–Typ. on-state characteristics for 1 of 4 switches with V_{DD} = +5 V, V_{SS} = 0 V.

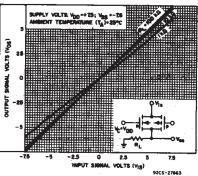


Fig. 4–Typ. on-state characteristics for 1 of 4 switches with V_{DD}=+7.5 V, V_{SS}=-7.5 V.

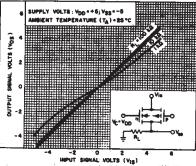
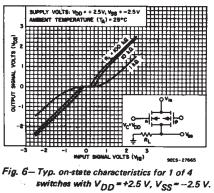
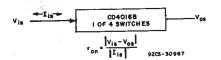
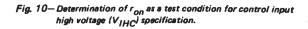
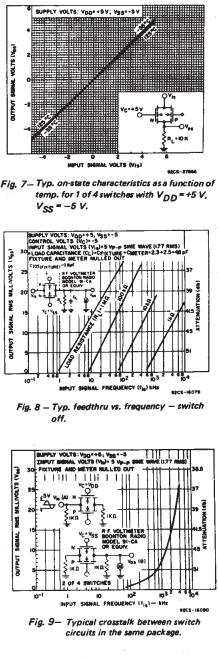



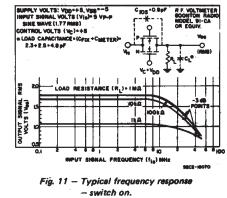
Fig. 5.- Typ. on-state characteristics for 1 of 4 switches with $V_{DD} = +5 V$, $V_{SS} = -5 V$.

205-27664

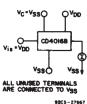

ELECTRICAL CHARACTERISTICS (cont'd)

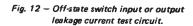

CHARACTERISTIC	TEST CONDITIONS		LIMITS AT INDICATED TEMPERATURES (°C)						UN	UTPUT SERMEL VOLTS (V ₆₆)	4
		V _{DD}				+2	+25		V JANAL V	•	
		(V)	-55	40	+85	+125	Тур.	Max.	S		-*
Control (V _C)											-¥
Control Input Low Voltage, VILC (Max.)	$ I_{is} < 10 \mu\text{A}$ $V_{is} = V_{SS}, V_{OS} = V_{DD}$ and $V_{is} = V_{DD}, V_{OS} = V_{SS}$	5,10, 15	0.9	0.9	0.4	0.4	<u>.</u>	0.7	v	Fig.	7 - Ty te
Control Input High Voltage, VIHC	See Fig. 10	5 10 15		~ .	7 ((Min.) (Min.) (Min.)	L	L	v	5 (Ves)	SUPPL CONTI INPUT INPUT COAD FIXTU CIOSIF
Input Current, IN (Max.)	V _{is} ≤ V _{DD} VDD VSS = 18 V VCC ≤ V _{DD} V _{SS}	18	±0.1	±0.1	±1	±1 .	±10-5	±0.1	μA	l Se	20 0
Crosstalk (Con- trol Input to Signal Output)	$V_C = 10 V (Sq. Wave)$ t_r , $t_f = 20 n_s$ $R_L = 10 k\Omega$	10	-	_	_	_	50	-	m∨	OUTPUT SKRKAL	
Turn-On Propagation Delay	t _r , t f = 20 ns CL = 50 pF R _L = 1 kΩ	5 10 15	-	-	-		35 20 15	70 40 30	ns		ig. 8
Maximum Control Input Repetition Rate	$\label{eq:Vis} \begin{split} & V_{is} = V_{DD}, V_{SS} = GND, \\ & R_L = 1 \ k\Omega \ to \ gnd, \\ & C_L = 50 \ \rho F, \\ & V_C = 10 \ V(Square \\ & wave \ centered \ on \ 5 \ V) \\ & t_r, \ t_f = 20 \ ns, \\ & V_{os} = \frac{V}{2} \ V_{os} \oplus 1 \ kHz \end{split}$	10		_		_	10		MHz		19. C
Input Capacitance, CIN			-	-	-	-	5	7.5	μF	MAL MAS MILLINOLTS (Vee)	20-1

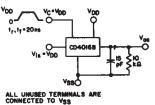

	Switch Input							Switch Output		
VDD	Vis		V _{os} (V)							
(V)	(V)	–55°C	-40°C	25°C*	25°C▲	+85°C	+125°C	Min.	Max.	
5 5	0 5	0.25 0.25	0.2 0.2	0.2 -0.2	0.16 0.16	0.12 0.12	0.14 0.14	_ 4.6	0.4 —	
10 10	0 10	0.62 -0.62	0.5 0.5	0.5 0.5	0.4 -0.4	0.3 -0.3	0.35 0.35	- 9.5	0.5 —	
15 15	0 15	1.8 -1.8	1.4 -1,4	1.5 -1.5	1.2 -1.2	1 -1	1.1 -1.1	13.5	1.5	


* Plastic package

Ceramic package

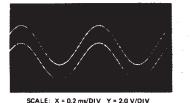






CHARAC- TERISTIC*	SUP	PLY	LOAD CONDITIONS						
FERIATIC	COND	TIONS	R _k = 1kΩ			10kΩ	R. =	001-()	
	VDD	V _{SS}	VALUE		VALUE V		VALUE		
	(V)	(V)	(\$2)	· (V), "	(\$2)	(V)	(Ω)	(V)	
	+15	0	200	+15	200	+15	180	+15	
ron	13	Ŭ	200	0	200	0	200	0	
ron (max.)	+15	0	300	+11	300	+9.3	320	+9.2	
	+10	0	290	+10	250	+10	240	+10	
ron	+10	0	290	0	250	0	300	0	
r _{on} (max.)	+10	0	500	+7.4	560	+5.6	610	+5.5	
	+ 5	0	860	+ 5	470	+ 5	450	+ 5	
_ ^r on ∘ ∘			600	0	- 580	0	800	0	
r _{on} (max.)	+ 5	0	1.7k	+4.2	7k	+2.9	33k	+2.7	
	+7.5	6 76	200	+7.5	200	+7.5	180	+7.5	
ron	+/.5	-7.5	200	~7.5	200	7.5	180	-7.5	
r _{on} (max.)	+7.5	-7.5	290	±0.25	280	±25	400	±0.25	
	+ 5		260	+ 5	250	+ 5	240	+ 5	
ron	+ 5 – 5	- 5	310	- 5	250	- 5	240	- 5	
ron (max.)	+ 5	- 5	600	±0.25	580	±0.25	760	±0.25	
	125	25	590	+2.5	450	+2.5	490	+2.5	
ron	+2.5 -2	+2.5 -2.5	720	-2.5	520	-2.5	520	2.5	
r _{on} (max.)	+2.5	-2.5	232k	±0.25	300k	±0.25	870k	±0.25	

TYPICAL ON-STATE RESISTANCE CHARACTERISTICS, TA = 25°C



9205-27668 Fig. 13 - Test circuit for square-wave response.

* Variation from aperfect switch, $r_{on} = 0 \Omega$.

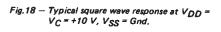
92CS-27612

Fig. 14 - Typical sine wave response of VDD = $+7.5 V, V_{SS} = -7.5 V.$

SCALE: X = 100 ns/DIV Y = 5.0 V/DIV

Fig. 17 - Typical square wave response at $V_{DD} = V_C = +15 V$, $V_{SS} = Gnd$.

92CS-27615


 $\begin{array}{l} {\sf SCALE: $X = 0.2 \mbox{ ms/DIV } $Y = 2.0 \mbox{ V/DIV } \\ {\sf VDD = VC = *5 \ V. \mbox{ VSS = 5 \ V. \ RL = 10 \mbox{ K}\Omega \\ {\sf CL = 15 \ p^{F}} \\ {\sf ILS = 1 \ KR2 \ VIS = 5 \ V \ p \ p} \\ {\sf DISTORTION = 0.4 \ \%} \end{array}$

9205-27613

Fig. 15 – Typical sine wave response of $V_{DD} = +5 V$, $V_{SS} = -5 V$.

SCALE: X = 100 ns/DIV Y = 5.0 V/DIV 92CS - 276/6

92CS - 27614

Fig. 16 - Typical sine wave response of V_{DD} = +2.5 V, VSS = -2.5 V.

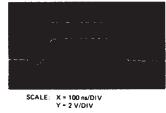
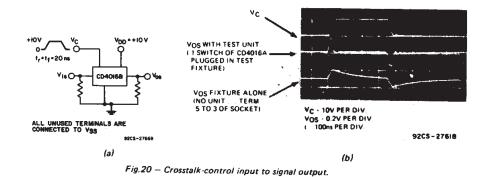



Fig. 19 - Typical square wave response at VDD = V_C = +5 V, V_{SS} = Gnd.

CD4016B Types

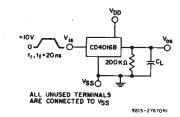
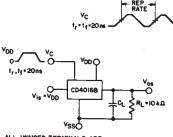



Fig.21 - Propagation delay time signal input (VIS) to signal output (VOS).

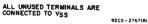


Fig. 22 - Max. control-input repetition rate.

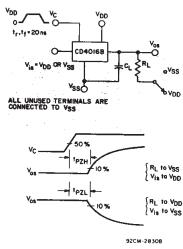
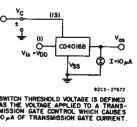
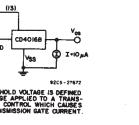




Fig.25 - Turn-On propagation delay-control input.

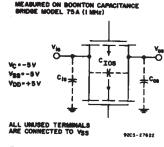
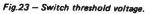
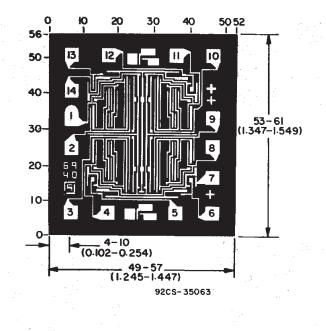




Fig.24 - Capacitance CIOS and COS.

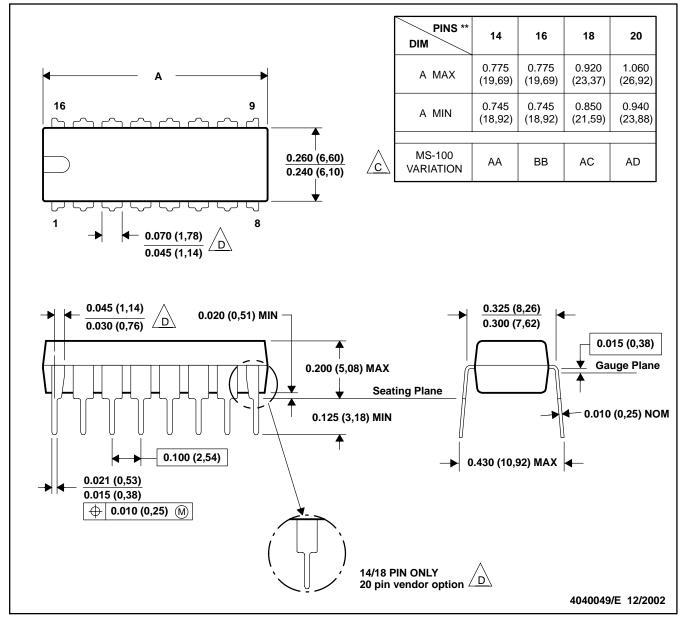
Dimensions and pad layout for CD4016BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

MPDI002C - JANUARY 1995 - REVISED DECEMBER 20002

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

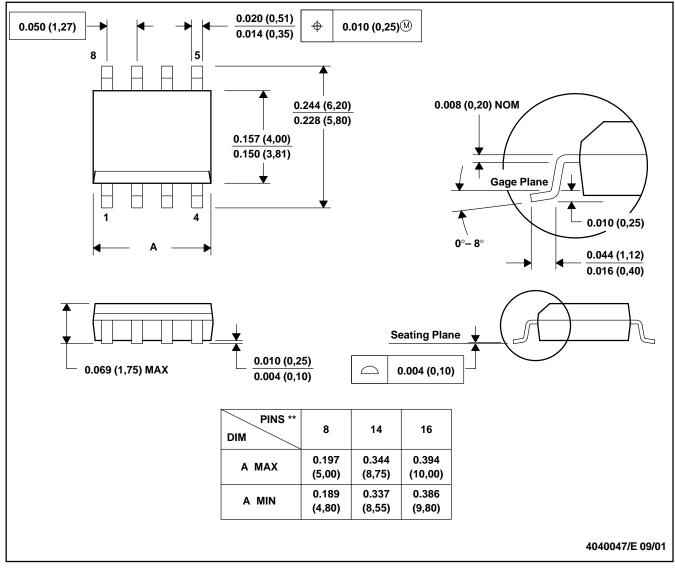
NOTES: A. All linear dimensions are in inches (millimeters).

λbλ

B. This drawing is subject to change without notice.

/C Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.



MECHANICAL DATA

MSOI002B - JANUARY 1995 - REVISED SEPTEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

D (R-PDSO-G**) 8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

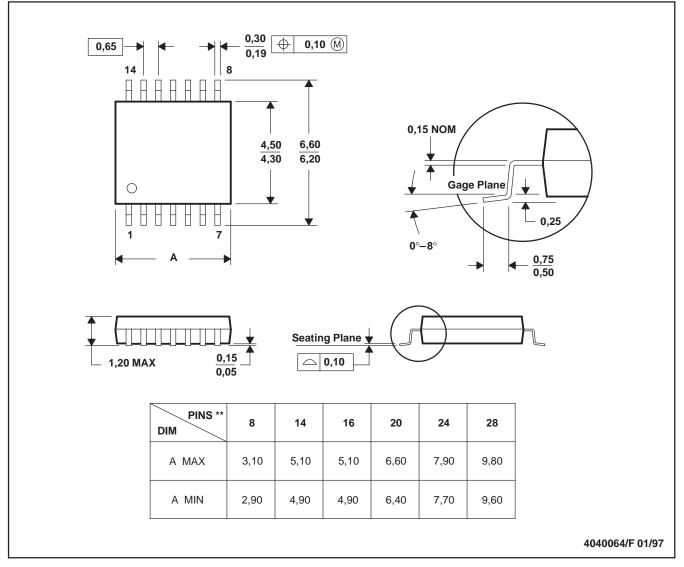
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated